OCArticle

Studies on the Synthesis of Apoptolidin A. 2. Synthesis of the
Disaccharide Unit

Masaki Handd, William J. Smith, 1l1} and William R. Roush*

Department of Chemistry, Scripps-Florida, Jupiter, Florida 33458, and Department of Chemistry,
University of Michigan, Ann Arbor, Michigan 48109

roush@scripps.edu

Receied October 17, 2007

PMBO. O _Me
I - "OH
HO Me
1

HO Me

Me 0o JOAc

+
TBSO’ |

OMe
5

Me
AcO. O Meo OTBS
IJ;/\F‘O’ ‘;:r‘OMe
|

disaccharide 3

Disaccharide3 correspoinding to the disaccharide unit of apoptolidin A has been synthesized via the
regio- and stereoselective TBS-OTf-promogkdlycosidation reaction of 2,6-dideoxy-2-io@eglucopy-
ranosyl acetate5] and p-methoxybenzyl 2,6-dideoxy-2-iodo-G-methyl-a-mannopyranosidel().

Introduction

Apoptolidin A is a potent and specific inhibitor of the

mitochondrial F-ATPase and is also able to induce apoptosis

in cells transformed with the adenovirus E1A oncogeheanks

among the top 0.1% of the most selective cell line cytotoxic

As part of our efforts to complete a total synthesis of
apoptolidin A? we have developed and report herein a synthesis
of disaccharide&, which we envisage will serve as the glycosyl

(3) For leading references to studies on the synthesis of apoptolidin,

agents known and accordingly has attracted considerable interestee: (@) Toshima, K.; Arita, T.; Kato, K.; Tanaka, D.; Matsumura, S.

as a target for total synthesis and analog developm8ateral

etrahedron Lett2001, 42, 8873. (b) Chen, Y.; Evarts, J. B., Jr.; Torres,
E.; Fuchs, P. LOrg. Lett 2002 4, 3571. (c) Chng, S.-S.; Xu, J.; Loh,

groups have reported synthetic studies directed toward apop-T.-P. Tetrahedron Lett2003 44, 4997. (d) Abe, K.; Kato, K.; Arai, T ;
tolidin, the aglycone apoptolidinone, and its disaccharide Rahim, M. A.; Sultana, I.; Matsumura, S.; Toshima, Fetrahedron Lett.

moiety34 Total syntheses of apoptolidin A have been reported

by the Nicolao@ and Koerf groups. The aglycone, apoptoli-
dinone, has been synthesized by Kdeulikowski/ and
Crimmins®

T Scripps-Florida.

* University of Michigan.
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SCHEME 1. Global Retrosynthetic Analysis of Apoptolidin A
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SCHEME 2. Retrosynthetic Analysis of Disaccharide 3
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donor for glycosidation of late stage intermediates en route to 4); glycosidation of very hindered secondary alcohols with
completion of a total synthesis of apoptolidin A (Scheme 1). donors such a$ have not yet been studied.

Strategy for Synthesis of Disaccharide 3 Results and Discussion
Disaccharided contains g5-glycoside linkage and logically Synthesis of the suitably protected rhamnal derivasye
disconnects into the precursor fragmeniS-gaethyli-rhamnal  which we targeted as a precursor to the 2-iodo-rhamnosyl donor

(4) and diO-acetylp-rhamnal €) (Scheme 2). We have 5 commenced from the known diacetyl rham6aivhich was
previously reported highly stereoselective syntheses of 2- deoxy-prepared by Torii's proceduf& Deprotection of using NaOMe
B-glycosidesi? 12 as well as 2-deoxy-glycosides;**via the in MeOH followed by selective protection of the C(3)-OH and
TMS-OTf or TBS-OTf promoted glycosidation reactions of sjlylation of C(4)-OH provided? (Scheme 3). Treatment Gf
2-deoxy-2-iodo-pyranosyl acetate$®'4and 2-deoxy-2-iodo-  wijth MeLi in THF at —78 °C followed by addition of MeOTf
pyranosyl trichloroacetimidat&sor the stannous chloridesilver and EgN then provideds.16 Treatment of8 with N-iodosuc-
perchlorate promoted glycosidations of 2-deoxy-2-iodo-pyra- cinimide (NIS) and AcOH in toluene gave a mixture of the
nosyl fluorides'? In this chemistry, an equatorial C(2)-iodide 2-deoxy-2-iodo3-gluco ) and 2-deoxy-2-iod@-manno )

on the glycoside donor directs the glycosidation with alcohols glycosides in 97% yield but with virtually no diastereoselectivity
to give thep-glycosidic linkage'® 2 whereas an axial C(2)-  (ca. 1:1). It is possible to increase tjieselectivity of such
iodide in the donor directs the glycosidation into thelycoside reactions if one can access thé; conformation of the glycal
product manifold3!4Thus, for the synthesis & itis necessary  partner using hindered protective groups such as TBDPS ethers,
that di-O-acetylp-rhamnal 6) be functionalized with a C(2)-  as demonstrated by McDonalé’sand out® previous studies.
equatorial iodide, as ib. An axial C(2)-iodo unit is required  However, use of a TBDPS ether protecting group strategy was
in the olivomycose unit of (i.e., the residue deriving from  not attractive for the purposes at hand. Fortunately, adding Ti-
3-C-methyli-rhamnald), since the glycosidic linkage between  (0-iPr), to the reaction of8 with NIS and performing this
the disaccharide and C(27)-OH of apoptolidinone is of the experiment at-20 to—30°C led to a slight increase in reaction
a-configuration. The proposed coupling #fand5 constitutes  selectivity 6:9 = 59:41). The undesired-manno isomer9

a demanding application of the 2-deoxy-2-iodo-glycosidation could be effectively recycled to the starting rhamiaby
technology yet studied, owing to the very hindered nature of treatment with Lil in toluend®

the secondary hydroxyl group of the olivomycose unit (e.9.,  with the glycoside donoi5 in hand, we attempted the
TMSOTf-promoted glycosidation reaction with the knowiC3-

22 Opons, B.i Liu, Qi Sullkowski, G. AAngew. Chem., Int. E004 methyl+-rhamnak!®2%as the acceptor. Unfortunately, numerous
(8) Crimmins, M. T.; Christie, H. S.; Chaudhary, K.; Long, A. Am.

Chem. Soc2005 127, 13810. (15) Torii, S.; Inokuchi, T.; Masatsugu, Bull. Chem. Soc. Jpri985
(9) Handa, M.; Scheidt, K. A.; Bossart, M.; Zheng, N.; Roush, WIR. 58, 3629.

Org. Chem.2008 73, 1031. (16) Barrett, A. G. M.; Miller, T. A.Tetrahedron Lett1988 29, 1873.
(10) Roush, W. R.; Bennett, C. H. Am. Chem. S0d.999 121, 3541. (17) McDonald, F. E.; Reddy, K. S.;’Bz, Y.J. Am. Chem. So200Q
(11) Roush, W. R.; Gung, B. W.; Bennett, C.@tg. Lett.1999 1, 891. 122, 4304.

(12) Blanchard, N.; Roush, W. ROrg. Lett.2003 5, 81. (18) Chong, P. Y.; Roush, W. FOrg. Lett.2002 4, 4523.
(13) Roush, W. R.; Briner, K.; Sebesta, D. nlett1993 264. (19) Jung, G.; Klemer, AChem. Ber1981 114, 740.
(14) Roush, W. R.; Narayan, 8irg. Lett.1999 1, 899. (20) Parker, K. A.; Meschwitz, S. MCarbohydrate Re<.988 172, 319.
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SCHEME 3. Synthesis of Glycoside Donor 5
Meo. O 1) MeONa, MeOH, rt. Me. O MeLi (2.3 eq) then
Q 2) PhCOCI, pyr, —20 °C Q MeOTf (1.6 eq) then
AcO 3) TBSOTY, 2,6-lutidine 1 590 EtsN (3.2 eq)
OAc CH,Cl,, 0 °C OBz THF, =78 °C, 88%
6 73% 7
NIS, AcOH
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SCHEME 4. Stereoselective Synthesis ¢FDisaccharide 12
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SCHEME 5. Synthesis of Activated Disaccharide Donor 3
Me 1) CAN, 23 °C
|);/\r\o‘ *OMe 2) Ac,0O, DMAP
HO Me | pyridine, 23 °C
87% (2 steps)
12 o:p=40:60

attempts to accomplish this glycosidation reaction using either when less than 1.0 equiv of TBS-OTf was used, ob#®and
TMS-OTf or TBS-OTf at various temperatures and in the unreacted starting materials were observed. After careful
presence of pyridine as a buffer were unsuccessful. Under all optimization of reaction conditions, the optimal procedure was
conditions examined, Ferrier-type decomposition of the acceptor determined to involve treatment of the mixturescdind11 (1.3

4 occurred via ionization of the C(3) hydroxyl group, which is  equiv) with 1.0 equiv of TBS-OTf in the presence of 4 A
both tertiary and allylic. Therefore, conversiondio a suitably molecular sieves at TC for 1 h. Additional TBS-OTf was then
protected 2,6-dideoxy-2-ioda-mannopyranoside was per- gradually added under careful monitoring until the doharas
formed prior to the glycosidation. Thus, treatment4ofvith consumed. Gratifyingly, disaccharid? was obtained in 60%
NIS andp-methoxybenzyl alcohol gave themanno glycoside  yield (based orb) without regio- or stereocisomers.

11 in 63% yield with excellent stereoselectivity (Scheme 4). Finally, conversion ofL2 to the activated disaccharide donor
Dimers (or high oligomers) that potentially could result via 3was performed by a two-step procedure (Scheme 5). Treatment

glycosidation of either of the hydroxyl groups dfwere not
observed. Treatment of a mixture of dorfoand acceptod 1
with a catalytic amount of TBS-OTf (0.3 equiv) at°C then
gave the targeteft-disaccharidd.2 but in only 12% yield. When

of 12 with an excess amount of ceric ammonium nitrate
(CAN),?* followed by chemoselective acetylation of the resulting
pyranose using acetic anhydride and pyridine in the presence
of DMAP then provided the targeted disaccharide doBan

the amount of TBS-OTf was increased to 1.3 equiv, the yield 87% yield as a ca. 6:4 mixture of anomeric acetates.

of 12improved to 42% but an uncharacterized complex mixture ~ Summary. An efficient and highlys-selective synthesis of
of other products was also observed. When the amount of TBS-3 corresponding to the disaccharide unit of apoptolidin A has
OTf was decreased to 1.1 or 1.0 equiv, disacchati?levas

obtained in 42% and 32% yields, respectively, again with an (21 jacob, P., Ili; Callery, P. S.; Shulgin, A. T.; Castagnoli, N. JJr.
uncharacterized mixture of byproducts also obtained. However, Org. Chem.1976 41, 3627.
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been completed. The key step of this synthesis is the regio- (40.8 mg, 51.5mol) in CH;CN (2.2 mL) and HO (300uL) was
and stereoselectiyg-glycosidation of the very hindered second- added cerium ammonium nitrate (282 mg, iBol). The resultant
ary alcohol in11 using 5 as the glycosyl donor. Continued —mixture was stirred for 10 min, cooled to°C, and diluted with
advancement of these intermediates toward completion of a totalSaturated aqueous NaH&Q he organic layer was extracted with

synthesis of apoptolidin A will be reported in due course. CI_—|CI3, the combined organic extracts were washed w_ith brine,
dried, and concentrated. The crude product was used in the next

reaction without purification.

. o
Experimental Sectior? To a solution of the above crude product in pyridine (1.0 mL)

(25,35,4R,5R,6R)-3-[(2S,3R,4S,5R, 6R)-5-(tert-Butyl-dimethy!- were added DMAP (0.6 mg, 5.16mol) and AgO (15 uL, 154
silanyloxy)-3-iodo-4-methoxy-6-methyl-tetrahydropyran-2-yloxy]- ﬂmol)_ at room temperature. The resultant mixture was stlrr_ed for
5-iodo-6-(4-methoxy-benzyloxy)-2,4-dimethyl-tetrahydropyran- 45 min at ambient temperature, coolied t6@, and diluted Wlth
4-ol (12).A mixture of donor5 (243 mg, 548mol), acceptor1 saturated aqueous NaH@' he organic layer was extracted with

(291 mg, 713«mol), ard 4 A molecular sieves (550 mg) in GH EtOAc, washed _\(vith brine, dried, and concentrated. The crude
Cl, (27.4 mL) was stirred for 20 min at room temperature and then Product was purified by flash chromatography (hexane/EtGAc
cooled to 0°C. A solution of TBS-OTf in CHCI, (2.74 mL, 548 30:1to 10:1) to give the activated glycosig€32.2 mg, 45.umol,
umol, 0.2 M) was added slowly. The resultant mixture was stirred 87%) as a colorless foamy solido]f% = +17.7 (¢ 1.15, CHCY);

for 1 h at 0°C. Additional TBS-OTf in CHCI, (1.09 mL, 219 mp 57-64 °C; 'H NMR data foro. isomer (400 MHz, CDG) o
umol, 0.2 M) was added portionwise during 1.5 h until the donor 6.39 (d,J = 2.2 Hz, 1H), 4.79 (dJ = 8.9 Hz, 1H), 4.33 (dJ =

was consumed, and then;Bt(300uL) was added. The resultant 2.3 Hz, 1H), 3.90 (dgJ = 8.6, 6.3 Hz, 1H), 3.723.80 (m, 2H),
mixture was stirred for 5 min at €C and filtered. The filtrate was ~ 3.60 (s, 3H), 3.32 (m, 1H), 3.173.27 (m, 2H), 2.63 (s, 1H), 2.09
washed with saturated aqueous NaH@@d with brine, dried, and (S, 3H), 1.74 (s, 3H), 1.33 (dl = 6.2 Hz, 3H), 1.25 (dJ = 6.1
concentrated. The crude product was purified by flash chromatog- Hz, 3H), 0.90 (s, 9H), 0.15 (s, 3H), 0.08 (s, 3HJC NMR data
raphy (hexane/EtOAe 40:1 to 20:1) to give thg-disaccharide  for o isomer (100 MHz, CDG) 6 168.6, 103.3, 95.6, 87.5, 82.3,
12 (262 mg, 33lumol, 60%) as a colorless foamy solida]f3 = 77.4,72.6,72.4,70.8,61.2,41.1, 33.7, 25.8 (3C), 22.9, 21.1, 18.2,
—15.1° (c 1.18, CHC}); mp 45°C; 'H NMR (400 MHz, CDC}) 17.9 (2C),—4.08,—4.11;'H NMR data forj isomer (400 MHz,

0 7.24 (d,J = 8.5 Hz, 2H), 6.87 (dJ = 8.5 Hz, 2H), 5.31 (s, 1H), CDCl) 6 4.99 (d,J = 1.6 Hz, 1H), 4.83 (dJ = 8.9 Hz, 1H), 4.41
4.79 (d,J = 8.9 Hz, 1H), 4.61 (dJ) = 11.4 Hz, 1H), 4.41 (dJ = (d, J = 1.5 Hz, 1H), 3.743.80 (m, 2H), 3.60 (s, 3H), 3.56 (m,
11.4 Hz, 1H), 4.32 (s, 1H), 3.80 (s, 3H), 3.78 (m, 1H), 3.75 (m, 1H), 3.32 (M, 1H), 3.173.27 (M, 2H), 2.75 (s, 1H), 2.15 (s, 3H),
1H), 3.68 (d,J = 9.1 Hz, 1H), 3.59 (s, 3H), 3.32 (m, 1H), 337  1.73 (s, 3H), 1.34 (dJ = 6.1 Hz, 3H), 1.24 (dJ = 6.1 Hz, 3H),
3.26 (m, 2H), 2.66 (brs, 1H), 1.75 (s, 3H), 1.28 (= 6.2 Hz, 0.90 (s, 9H), 0.15 (s, 3H), 0.08 (s, 3H¥C NMR data for3 isomer
3H), 1.26 (d,J = 6.1 Hz, 3H), 0.91 (s, 9H), 0.15 (s, 3H), 0.09 (s, (100 MHz, CDC}) 6 168.7, 103.1, 90.2, 87.5, 82.6, 77.4, 72.8,
3H); 1°C NMR (100 MHz, CDC4) 6 159.3,129.5 (2C), 129.3,113.8  72.6, 72.4, 61.2, 47.2, 33.7, 25.8 (3C), 21.1, 21.0, 18.4, 17.9 (2C),
(2C), 103.3, 101.8, 87.6, 83.0, 77.5, 72.6, 72.5, 69.4, 68.0, 61.2, —4,08,—4.11; IR (neat) 3516, 2932, 1747, 1378, 1205, 1080, 1047,
55.2,43.2, 33.7, 25.8 (3C), 22.9, 18.3, 17.9 (2€4,09, -4.12; 1006, 930, 862, 836, 776, 708 CMIHRMS (ESt) mVz for CooHadl -

IR (neat) 3522, 2931, 1613, 1514, 1462, 1381, 1248, 1084, 1006, NaQ;Si [M + Na]" calcd 737.0480, found 737.0504.

863, 836, 776, 708 cm}; HRMS (ESt) m/z for CygHael JNaGsSi
[M + NaJ calcd 815.0949, found 815.0977.

Acetic Acid (2,3R,4R,5S,69)-5-[(2S,3R,4S,5R,6R)-5-(tert-Butyl-
dimethyl-silanyloxy)-3-iodo-4-methoxy-6-methyl- tetrahydro-
pyran-2-yloxy]-4-hydroxy-3-iodo-4,6-dimethyl-tetrahydropyran-
2-yl Ester (3). To a room-temperature mixture of dissacharide
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